

Product Specification

Applied Green Light, Inc.

8.4" SVGA

High brightness color TFT-LCD module

Model: VM08B5 V1

Date: Oct. 26th, 2023

Note: This specification is subject to change without notice

Customer :			
		Date :	

Approved	Prepared
Date:	Date:
1	

MODEL: VM08B5 V1 page: /18 Doc. No:

Applied Green Light, Inc.

Contents

1. Handling Precautions

2. General Description

- 2.1 Overview
- 2.2 Features
- 2.3 Application
- 2.4 Display specifications
- 2.5 Optical characteristics

3. Absolute Maximum Ratings

- 3.1 TFT LCD module
- 3.2 Environment

4. Electrical Characteristics

- 4.1 TFT LCD module
 - 4.1.1 Power Specification
- 4.2 Interface connection
- 4.3 Power sequence
- 5. Timing conditions
- 6. Timing diagram
- 7. Reliability Test
- 8. Shipping package
- 9. Mechanical Characteristics

RECORD OF REVISION

0.12012/08/15AllFirst Edition for customer0.22019/02/12AllNew TFT cell design	
0.2 2019/02/12 All New TFT cell design	

3

MODEL: VM08B5 V1

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 10) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.

.

2. General Description

2.1 Overview

This specification applies to the 8.4" Color Active Matrix Liquid Crystal Display composed of a TFT-LCD display a LED backlight system. The screen format is intended to support SVGA $(800(H) \times 600(V))$ 16.2M colors.

LED driving board for backlight unit is not included.

2.2 Features

- Sunlight readable display, 1000nits by LED backlight.
- LVDS interface with LED backlight driver integration
- Wide viewing angle
- Low power consumption
- Wide operation temperature
- RoHS Compliance

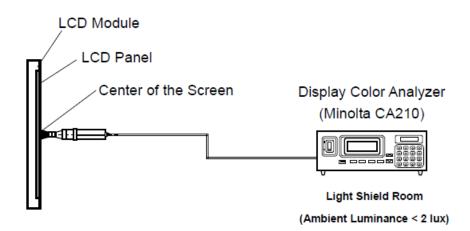
2.3 Application

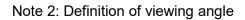
Industrial Application; especial kiosk and digital signage display.

2.4 Display specifications

Items	Unit	Specification
Screen Diagonal	inch	8.4
Active Area	mm	170.4 (H) x 127.8 (V)
Pixels H x V	pixels	800 x3(RGB) x 600
Pixels Pitch	um	213 (per one triad) x 213
Pixel Arrangement		RGB Vertical stripe
Display mode		Normally white
White luminance (center)	Cd/m ²	1000 (Тур.)
Contrast ratio		600 (Тур.)
Optical Response Time	msec	8 ms (Typ. on/off)
Normal Input Voltage Vcc	Volt	3.3
Power Consumption	Watt	7W
(Vcc Line + LED backlight)		(Vcc line=0.5W , LED line=6.5 W)
Weight	Grams	TBD
Physical size	mm	203.0(H) x 143.5(V) x 8.0(D) (typ)
Electrical Interface		One Chanel LVDS
Support Colors		16.2 M colors
Surface Treatment		Anti-Glare, 3H
Temperature range		
Operating	0C	-20~ 70 (TFT surface)
Storage (Shipping)	0C	-30 ~ 80
RoHS Compliance		RoHS Compliance

2.5 Optical characteristics

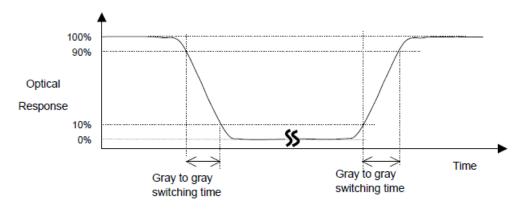

Items	Unit	Conditions	Min.	Тур.	Max.	Note
		Horizontal (Right)	65	75		
	Dog	CR=10 (Left)	65	75		2
Viewing angle	Deg.	Vertical (Up)	50	60		2
		CR=10 (Down)	60	70		
Contrast Ratio		Normal Direction	480	600		3
Response Time	msec	Raising + Falling		8		4
Color coordinates		White x	-0.05	0.290	+0.05	5
(CIE) White		White y	-0.05	0.300	+0.05	5
Center Luminance	Cd/m ²		800	1000		6
Luminance Uniformity	%		70	75		7
Crosstalk (in 60 Hz)	%				1.5	
Flicker	dB				-20	


The following optical characteristics are measured under stable condition at 25 °C

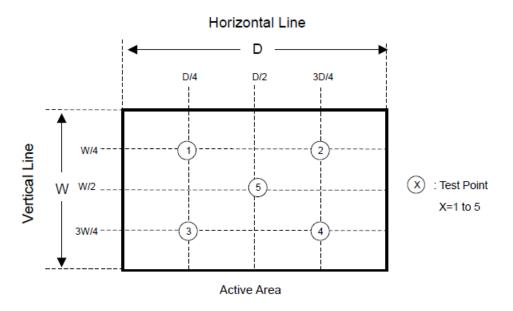


Note 1: Measurement method

The LCD module should be stabilized at given temperature for 0.5 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.


Note 3: Contrast ratio is measured by Minolta CA 210

Note 4: Definition of Response time


The output signals of photo detector are measured when the input signals are changed from "Full Black" to "Full White" (rising time), and from "Full White" to "Full Black" (falling time), respectively. The response time is interval between the 10% and 90% of amplitudes. Please refer to the figure as below.

Note 5: Color chromaticity and coordinates (CIE) is measured by Minolta CA 210

Note 6: Center luminance is measured by Minolta CA 210

Note 7: Luminance uniformity of these 5 points is defined as below and measured by Minolta CA 210

9

MODEL: VM08B5 V1

3. Absolute Maximum Ratings

Absolute maximum ratings of the module are as following:

3.1 TFT LCD module

Items	Symbol	Min	Max	Unit	Conditions
Logic input voltage	V _{DD}	-	4.6	Volt	
Input BLU power	V _{LED}	-	5.5	Volt	

3.2 Environment

Itomo	Symbol	Values			l lmit	Conditions	
Items	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Operation temperature	T _{OP}	-20	-	70	0C		
Operation Humidity	H _{OP}	20		80	%	Note 3	
Storage temperature	T _{ST}	-30		80	0 ⁰	NOLE 5	
Storage Humidity	H_{ST}	30		80	%		

Note 1: With in Ta= 25℃

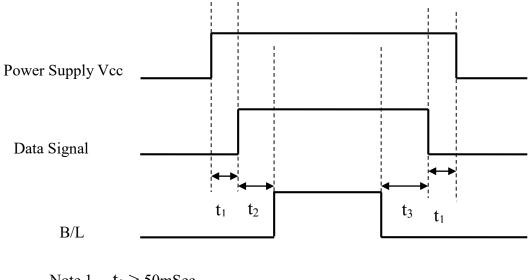
Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: For quality performance, please refer to IIS (Incoming Inspection Standard).

4. Electrical Characteristics

- 4.1TFT LCD module
 - 4.1.1 Power Specification

_		Value					
Item	Symbol	Min	Тур.	Max	Unit	Note	
Power Supply to LCD	V _{CC}	3.0	3.3	3.6	V		
Power Supply to LED Backlight (V)	V_{LB}	4.7	5.0	5.5	V		
Power Supply to LED Backlight (I)	I _{LB}	1.04	1.3	1.65	A	$V_{LB} = 5.0V$ $V_{F(LED)} = 19.5V$ $I_{F(LED)} = 330mA$	
Forward Current of LED String t	I _{F(LED)}		190		mA		
Differential Input High Threshold	V _{THLVDS}	_	_	100	mV		
Differential Input Low Threshold	V _{TLLVDS}	-100	_		mV	Note 1	
Digital Current Consumption	I _{CC}	-	100	120	mA		
Threshold Enable	V _{DIMH}	2.0	-	-	V		
Threshold Disable	V _{DIML}	-	-	0.6	V		
PWM Dimming Range	D	10	-	100	%	When Duty Ratio = 0%, the backlight will be turned off.	
LED backlight life (MTBF)	Hours		80,000				


4.2 Interface connection

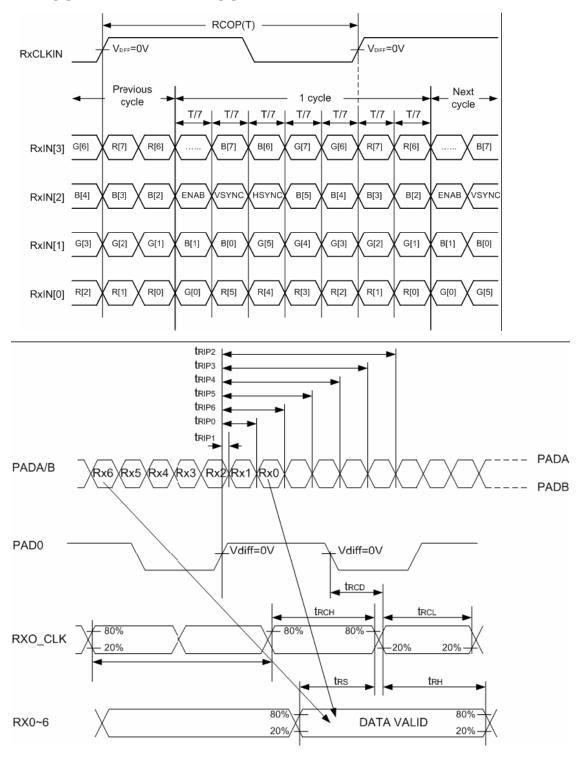
CN1: Hirose DF19G-20P-1.25H or equivalent

Pin No	Symbol	Description	Remark
1	VCC	Power supply +3.3V	
2	VCC	Power supply +3.3V	
3	GND	Power ground	
4	GND	Power ground	
5	IN0-	Negative LVDS differential data input	
6	IN0+	Positive LVDS differential data input	
7	GND	Power ground	
8	IN1-	Negative LVDS differential data input	
9	IN1+	Positive LVDS differential data input	
10	GND	Power ground	
11	IN2-	Negative LVDS differential data input	
12	IN2+	Positive LVDS differential data input	
13	GND	Power ground	
14	CLK-	Negative LVDS differential clock input	
15	CLK+	Positive LVDS differential clock input	
16	GND	Power ground	
17	VLED	LED Power supply +5V	
18	VLED	LED Power supply +5V	
19	Enable	Backlight Enable	
20	ADJ	Backlight Dimming (Analog)	

4.3 Power sequence

Note 1. $t_1 > 50 \text{mSec}$ $t_2 > 200 \text{mSec}$ $t_3 > 200 \text{mSec}$

Note2. Data Signals include Rin0+, Rin0-, Rin1+, Rin1-, Rin2+, Rin2-, Rin3+, Rin3-, CLKIN+, CLKIN-,


5. Timing conditions

Item	Symbol	Min.	Тур.	Max.	Unit	Note
RxCLKIN Period	t _{RCP}	11.76	Т	50	ns	
RxCLKIN High Time	t rch	_	T/2	_	ns	
RxCLKIN Low Time	trcl	_	T/2	—	ns	
PAD0/1 to RxCLKIN Delay	t rcd	_	3T/7	_	ns	
Data Setup to RxCLKIN	trs	1.9	_	_	ns	
Data Hold from RxCLKIN	t rh	3.0	_	_	ns	
Input Data Position0	Tripi	-0.4	0	0.4	ns	
(T=11.76ns)	I KIPI	-0.4	0	U.T	115	
Input Data Position1	Trip2	T/7-0.4	T/7	T/7+0.4	ns	
(T=11.76ns)	I RIP2	177-0.4	1//	1// 0.7	115	
Input Data Position2	Trip3	2T/7-0.4	2T/7	2T/7+0.4	ns	
(T=11.76ns)	I KII 5	21/7 0.4	21/7	21/7+0.4	115	
Input Data Position3	Trip4	3T/7-0.4	3T/7	3T/7+0.4	ns	
(T=11.76ns)	I KIP4	51/7-0.4	51/7	51/7+0.4	115	
Input Data Position4	Trip5	4T/7-0.4	4T/7	4T/7+0.4	ns	
(T=11.76ns)	I KIPS	41//-0.4	41//	41// 0.4	115	
Input Data Position5	Trip6	5T/7-0.4	5T/7	5T/7+0.4	ns	
(T=11.76ns)	I KIPO	51/7-0.4	J 177	51// 0.4	115	
Input Data Position6	Trip7	6T/7-0.4	6T/7	6T/7+0.4	ns	
(T=11.76ns)	I KIP/	01//-0.4	01//	01// 0.4	115	

6. Timing diagram

R/G/B[7]s are MSBs and R/G/B[0]s are LSBs

15

MODEL: VM08B5 V1

7. Reliability Test

Environment test conditions are listed as following table.

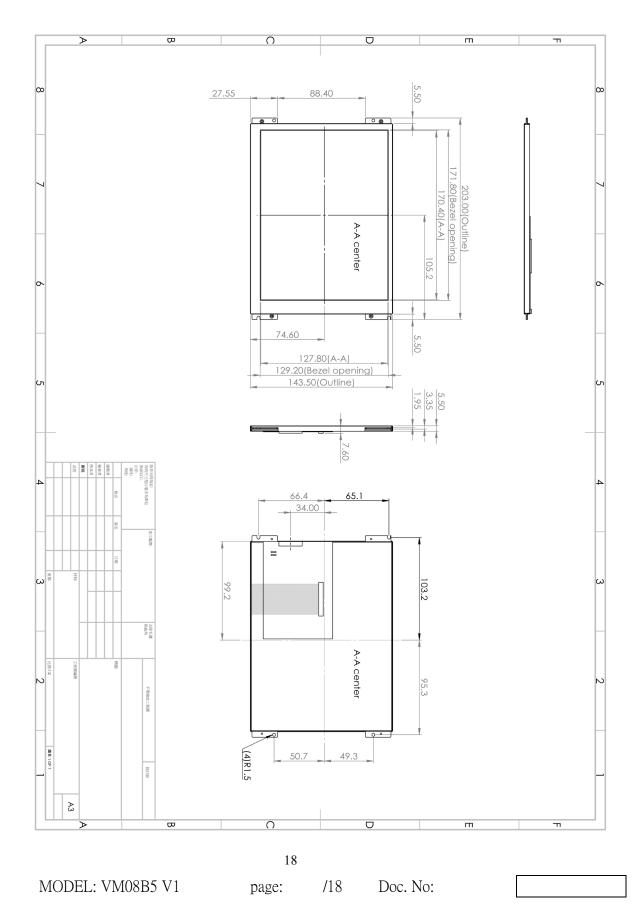
Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50 $^\circ\!$ C, 80%RH, 240hours	
High Temperature Operation (HTO)	Ta= 70° C, 240hours	3
Low Temperature Operation (LTO)	Ta= -20℃, 240hours	
High Temperature Storage (HTS)	Ta= 80 $^{\circ}$ C, 240hours	
Low Temperature Storage (LTS)	Ta= -30℃, 240hours	
Thermal Shock Test (TST)	-10℃/30min, 60℃/30min, 100 cycles	
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
ESD (ElectroStatic Discharge)	Contact Discharge: ± 4KV,	
	150pF(330 Ω) 1sec/cycle	
	Air Discharge: \pm 8KV, 150pF(330 Ω)	
	1sec/cycle	

Note 1: The TFT-LCD module will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C, and back again. Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

- Note 2: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost. Self-recoverable. No hardware failures.
- Note 3: TFT surface.

Note 4: There should be no condensation on the surface of panel during test.

Note 5: In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.


Note 6: Before cosmetic and function test, the product must have enough recovery time, at least 4 hours at room temperature.

8. Shipping package (TBD)

9. Mechanical Characteristics

